Abigail Gentle

Sydney, Australia

abigail.gentle@proton.me | abigailgentle.com | Google Scholar

Summary

My work aims to understand the limits of statistical inference under Differential Privacy, the gold-standard for privacy enhancing technology. I work primarily in the local model, where data is made private before it is collected and stored. To this end, I have had the pleasure of working on fundamental problems such as quantiles (ICML 2025), hypothesis testing (ITCS 2026), and histograms, where I have taken part in proving both novel error bounds (ITCS 2025) and, in independent work, a deep connection between optimal algorithms and a special class of combinatorial objects (ITW 2025). I am broadly interested in collaborations in privacy, property testing, and applied problems of statistics and the application of privacy enhancing technologies to the social sciences.

Education

2023 - Present	Doctor of Philosophy, Computer Science The University of Sydney, Supervisors: Clément Canonne and Sasha Rubin
2022	Bachelor of Science (Computer Science Honours) Honours Class I The University of Sydney, Supervisor: Clément Canonne Thesis: "Differential Privacy in the Group Shuffle Model."
2018 - 2021	Bachelor of Science (Computer Science) (Philosophy) The University of Sydney

Professional Experience

Lead Researcher

Led a small team to develop an geo-spatial machine learning classification platform. Improved and maintained pipelines for Australia's largest farmer database.

Publications

Authors are listed in alphabetical order, with equal contribution from each.

- 1. C. L. Canonne, **A. Gentle** and V. Singhal, "Uniformity Testing under User-Level Local Privacy." **17th Innovations** in Theoretical Computer Science Conference (ITCS 2026).
- 2. **A. Gentle**, "Necessity of Block Designs for Optimal Locally Private Distribution Estimation." **IEEE Information Theory Workshop** (ITW 2025).
- 3. A. Aamand, F. Boninsegna, **A. Gentle**, J. Imola, and R. Pagh, "Lightweight Protocols for Distributed Private Quantile Estimation." **Forty-second International Conference on Machine Learning** (ICML 2025).
- 4. C. L. Canonne and **A. Gentle**, "Locally Private Histograms in All Privacy Regimes." **16th Innovations in Theoretical Computer Science Conference** (ITCS 2025).

Invited & Conference Talks

2025	IEEE Information Theory Workshop, Sydney, Australia
	Necessity of Block Designs for Optimal Locally Private Distribution Estimation

2024 | Simons Institute for the Theory of Computing, University of California, Berkeley Hidden Gems: Kearns Saul's Inequality
For the Sublinear Algorithms Summer Research Program

Institutional Talks and Reading Groups

2024	Simons Institute for the Theory of Computing, University of California, Berkeley
	Differential Privacy Reading Group (Organiser)
	A weekly differential privacy reading group for the Sublinear Algorithms Summer Research Program. Gave the introductory
	talk on differential privacy, a focused talk on shuffle differential privacy, and arranged speakers.

2024 - 2025 | Sydney Algorithms and Computational Theory Group, University of Sydney

SACT Seminar

Seminars on "Locally Private Histograms in All Privacy Regimes" and "Lightweight Protocols for Distributed Private Quantile Estimation"